7 research outputs found

    Project management Tools and Techniques (T&T) usage in building sector companies in Cartagena City, T.C.D..

    Get PDF
    This research work was based on an analysis of project management tools and techniques usage and its practical application in the construction sector. It is a fact that projects currently have a high failure rate which was corroborated in this research work through a diagnosis carried out in the city of Cartagena to 22 project managers of important construction companies that currently execute housing projects and therefore, it was determined that techniques and tools of worldwide recognition and suggested by the most relevant standards and methodology are not being used in construction projects. In this work the deficiencies and strengths of the companies were shown when applying the project management techniques and tools; a guide was prepared to use them through specific recommendations to the construction sector. © 2019 Latin American and Caribbean Consortium of Engineering Institutions. All rights reserved

    Identification of coagulation gene 3′UTR variants that are potentially regulated by microRNAs

    No full text
    MicroRNAs have been recognized as critical regulators of gene expression and might affect the risk of venous thrombosis. We aimed to identify 3′ untranslated region (UTR) variants in coagulation genes that influence coagulation factor levels and venous thrombosis risk. The 3′UTR of coagulation genes were sequenced in subjects with extremely high or low plasma levels of these factors in two case-control studies. In total, 28 variants were identified. Five single nucleotide polymorphisms (SNPs) were predominantly present in one extreme level group (F2 rs1799963, F8 rs1050705 and F11 rs4253429, rs4253430 and rs1062547). Additional to F2 rs1799963, F8 rs1050705 (in men) and F11 rs4253430 were associated with an increased risk of venous thrombosis albeit confidence intervals were wide. The three F11 SNPs were in high linkage disequilibrium with functional variants rs2289252 and rs2036914. Rs1062547 and rs4253430 were associated with a significant increase of plasma FXI activity in heterozygotes and homozygotes in wild-type controls. In silico prediction revealed that these SNPs might disturb the binding sites of miR-544 and miR-513a-3p. Only miR-544 provoked a significant decrease of the luciferase activity that was not observed with a rs4253430 mutated vector. In conclusion, these results reinforce that microRNAs are candidates to play a role in haemostasis and complex disorders, such as thrombosis

    Identification of coagulation gene 3′UTR variants that are potentially regulated by microRNAs

    No full text
    MicroRNAs have been recognized as critical regulators of gene expression and might affect the risk of venous thrombosis. We aimed to identify 3′ untranslated region (UTR) variants in coagulation genes that influence coagulation factor levels and venous thrombosis risk. The 3′UTR of coagulation genes were sequenced in subjects with extremely high or low plasma levels of these factors in two case-control studies. In total, 28 variants were identified. Five single nucleotide polymorphisms (SNPs) were predominantly present in one extreme level group (F2 rs1799963, F8 rs1050705 and F11 rs4253429, rs4253430 and rs1062547). Additional to F2 rs1799963, F8 rs1050705 (in men) and F11 rs4253430 were associated with an increased risk of venous thrombosis albeit confidence intervals were wide. The three F11 SNPs were in high linkage disequilibrium with functional variants rs2289252 and rs2036914. Rs1062547 and rs4253430 were associated with a significant increase of plasma FXI activity in heterozygotes and homozygotes in wild-type controls. In silico prediction revealed that these SNPs might disturb the binding sites of miR-544 and miR-513a-3p. Only miR-544 provoked a significant decrease of the luciferase activity that was not observed with a rs4253430 mutated vector. In conclusion, these results reinforce that microRNAs are candidates to play a role in haemostasis and complex disorders, such as thrombosis

    Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The differential invariant yield as a function of transverse momentum (pT) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0–10%), semi-central (30–50%) and peripheral (60–80%) lead–lead (Pb–Pb) collisions at √sNN = 5.02 TeV in the pT intervals 0.5–26 GeV/c (0–10% and 30–50%) and 0.5–10 GeV/c (60–80%). The production cross section in proton–proton (pp) collisions at √s = 5.02 TeV was measured as well in 0.5 < pT < 10 GeV/c and it lies close to the upper band of perturbative QCD calculation uncertainties up to pT = 5 GeV/c and close to the mean value for larger pT. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon–nucleon collisions is evaluated by measuring the nuclear modification factor RAA. The measurement of the RAA in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The RAA shows a suppression with respect to unity at intermediate pT, which increases while moving towards more central collisions. Moreover, the measured RAA is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low pT in heavy-ion collisions at LHC

    HΛ3 and H‾Λ‾3 lifetime measurement in Pb–Pb collisions at √sNN=5.02 TeV via two-body decay

    No full text
    An improved value for the lifetime of the (anti-)hypertriton has been obtained using the data sample of Pb–Pb collisions at √sNN = 5.02 TeV collected by the ALICE experiment at the LHC. The (anti-)hypertriton has been reconstructed via its charged two-body mesonic decay channel and the lifetime has been determined from an exponential fit to the dN/d(ct) spectrum. The measured value, τ = 242+34 −38 (stat.) ± 17 (syst.) ps, is compatible with representative theoretical predictions, thus contributing to the solution of the longstanding hypertriton lifetime puzzle

    Study of the Λ–Λ interaction with femtoscopy correlations in pp and p–Pb collisions at the LHC

    No full text
    This work presents new constraints on the existence and the binding energy of a possible – bound state, the H-dibaryon, derived from – femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in pp collisions at √s = 13 TeV and p–Pb collisions at √sNN = 5.02 TeV, combined with previously published results from pp collisions at √s = 7 TeV. The – scattering parameter space, spanned by the inverse scattering length f −1 0 and the effective range d0, is constrained by comparing the measured – correlation function with calculations obtained within the Lednický model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the – interaction. The region in the (f −1 0 ,d0) plane which would accommodate a – bound state is substantially restricted compared to previous studies. The binding energy of the possible – bound state is estimated within an effective-range expansion approach and is found to be B = 3.2+1.6 −2.4(stat)+1.8 −1.0(syst) MeV

    Dielectron and heavy-quark production in inelastic and high-multiplicity proton–proton collisions at √s = 13 TeV

    No full text
    The measurement of dielectron production is presented as a function of invariant mass and transverse momentum (pT) at midrapidity (|ye| < 0.8) in proton–proton (pp) collisions at a centre-of-mass energy of √s = 13 TeV. The contributions from light-hadron decays are calculated from their measured cross sections in pp collisions at √s = 7 TeV or 13 TeV. The remaining continuum stems from correlated semileptonic decays of heavy-flavour hadrons. Fitting the data with templates from two different MC event generators, PYTHIA and POWHEG, the charm and beauty cross sections at midrapidity are extracted for the first time at this collision energy: dσcc¯/dy|y=0 = 974 ± 138 (stat.) ± 140 (syst.) ± 214(BR) μb and dσbb¯ /dy|y=0 = 79 ± 14 (stat.) ± 11 (syst.) ± 5(BR) μb using PYTHIA simulations and dσcc¯/dy|y=0 = 1417 ± 184 (stat.) ± 204 (syst.) ± 312(BR) μb and dσbb¯ /dy|y=0 = 48 ± 14 (stat.) ± 7 (syst.) ± 3(BR) μb for POWHEG. These values, whose uncertainties are fully correlated between the two generators, are consistent with extrapolations from lower energies. The different results obtained with POWHEG and PYTHIA imply different kinematic correlations of the heavy-quark pairs in these two generators. Furthermore, comparisons of dielectron spectra in inelastic events and in events collected with a trigger on high charged-particle multiplicities are presented in various pT intervals. The differences are consistent with the already measured scaling of light-hadron and open-charm production at high charged-particle multiplicity as a function of pT. Upper limits for the contribution of virtual direct photons are extracted at 90% confidence level and found to be in agreement with pQCD calculations
    corecore